用向量方法证明三角形的余弦定理
证明:令三角形ABC的三个角分别为∠A、∠B、∠C,其中∠A对应的边长为a,∠B对应的边长为b,∠C对应的边长为c。
那么在三角形ABC中,向量BC=向量AC-向量AB,且|AB|=c,|AC|=b,|BC|=a
则BC·BC=(AC-AB)·(AC-AB),
那么|BC|^2=|AC|^2+|AB|^2-2AC·AB,
又因为AC·AB=|AC|*|AB|*cosA,
a^2=b^2+c^2-2bccosA。
同理可用向量证明得到,
b^2=a^2+c^2-2bccosB,
c^2=b^2+a^2-2bccosC。
上述即用向量证明了三角形的余弦定理。
扩展资料:
1、向量的运算
对于向量a=(x1,y1),b=(x2,y2),c(x3,y3)则向量的运算法则如下。
(1)数量积
对于向量a=(x1,y1),b=(x2,y2),且a,b之间的夹角为A,那么
a·b=b·a、(λa)·b=λ(a·b)、(a+b)·c=a·c+b·c。
a·b=|a|·|b|·cosA,
(2)向量的加法
a+b=b+a、(a+b)+c=a+(b+c)
(3)向量的减法
a+(-b)=a-b
2、正弦定理应用
在任意△ABC中,角A、B、C所对的边长分别为a、b、c,
那么a/sinA=b/sinB=c/sinC。
且三角形面积S=1/2absinC=1/2acsinB=1/2bcsinA。
参考资料来源:百度百科-向量
余弦定理怎么证明
余弦定理,是描述三角形中三边长度与一个角的余弦值关系的数学定理,余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。
余弦定理证明方法如图所示:
平面向量证法:
∵如图,有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)。
∴c·c=(a+b)·(a+b)。
∴c²=a·a+2a·b+b·b∴c²=a²+b²+2|a||b|Cos(π-θ)。
(以上粗体字符表示向量)。
又∵Cos(π-θ)=-Cosθ。
∴c²=a²+b²-2|a||b|Cosθ(注意:这里用到了三角函数公式)再拆开,得c²=a²+b²-2abcosC。
即cosC=(a2+b2-c2)/2*a*b。
同理可证其他,而下面的cosC=(c2-b2-a2)/2ab就是将cosC移到左边表示一下。
用正弦定理证明余弦定理
正弦定理
证明
步骤1
在锐角△abc中,设bc=a,ac=b,ab=c。作ch⊥ab垂足为点h
ch=a·sinb
ch=b·sina
∴a·sinb=b·sina
得到
a/sina=b/sinb
同理,在△abc中,
b/sinb=c/sinc
步骤2.
证明a/sina=b/sinb=c/sinc=2r:
如图,任意三角形abc,作abc的外接圆o.
作直径bd交⊙o于d.
连接da.
因为在同圆或等圆中直径所对的圆周角是直角,所以∠dab=90度
因为在同圆或等圆中同弧所对的圆周角相等,所以∠d等于∠c.
所以c/sinc=c/sind=bd=2r
类似可证其余两个等式。
余弦定理
平面几何证法
在任意△abc中
做ad⊥bc.
∠c所对的边为c,∠b所对的边为b,∠a所对的边为a
则有bd=cosb*c,ad=sinb*c,dc=bc-bd=a-cosb*c
根据勾股定理可得:
ac2=ad2+dc2
b2=(sinb*c)2+(a-cosb*c)2
b2=(sinb*c)2+a2-2ac*cosb+(cosb)2*c2
b2=(sinb2+cosb2)*c2-2ac*cosb+a2
b2=c2+a2-2ac*cosb
cosb=(c2+a2-b2)/2ac
证明余弦定理
答:余弦定理的证明如下。
余弦定理和正弦定理在运用的过程中,通过是和三角函数联系在一起,通过余弦和正弦的定义以及使用特点,求出关于三角形以及面积函数关系式。
本文主要从向量法、三角函数法、辅助圆法来讲解证明余弦定理!
1、向量法
2、三角函数法
3、辅助圆法
余弦定理,是描述三角形中三边长度与一个角的余弦值关系的数学定理,余弦定理是揭示三角形边角关系的重要定理。
直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其他知识,则使用起来更为方便、灵活。